Home Archive Contact
PDF download
Cite article
Share options
Informations, rights and permissions
Issue image
Vol 14, Issue 1, 2025
Pages: 396 - 405
Professional paper
See full issue

INTERNACIONALNI UNIVERZITET TRAVNIK U TRAVNIKU
EKONOMSKI FAKULTET TRAVNIK U TRAVNIKU
PRAVNI FAKULTET TRAVNIK U TRAVNIKU
FAKULTET ZA MEDIJE I KOMUNIKACIJE TRAVNIK U TRAVNIKU

u saradnji sa

MIT UNIVERZITET SKOPLJE, SJEVERNA MAKEDONIJA
VEVU, VELEUČILIŠTE LAVOSLAV RUZIČKA U VUKOVARU, HRVATSKA
VELEUČILIŠTE VIMAL, SISAK, HRVATSKA
CKKPI, TRAVNIK, BOSNA I HERCEGOVINA

organizuju

31. MEĐUNARODNU KONFERENCIJU

EKONOMSKE, PRAVNE I MEDIJSKE INTEGRACIJE BOSNE I HERCEGOVINE I ZEMALJA ZAPADNOG
BALKANA KAO KLJUČNI POKRETAČ EUROPSKIH VRIJEDNOSTI

12. – 13. decembar 2025. godine

Metrics and citations
Abstract views: 1
PDF Downloads: 0
Google scholar: See link
Article content
  1. Abstract
  2. Disclaimer
Received: 14.04.2025. >> Accepted: 30.04.2025. >> Published: 16.05.2025. Professional paper

ULOGA UMJETNE INTELIGENCIJE U UNAPREĐENJU INTELIGENTNIH TRANSPORTNIH SISTEMA ZA EFIKASNIJI PREVOZ PUTNIKA U URBANIM SREDINAMA / THE ROLE OF ARTIFICIAL INTELLIGENCE IN IMPROVING INTELLIGENT TRANSPORTATION SYSTEMS FOR MORE EFFICIENT PASSENGER TRANSPORT IN URBAN AREAS

By
Almir Ahmetspahić ,
Almir Ahmetspahić
Goran Popović ,
Goran Popović

Fakultet politehničkih nauka Travnik, Internacionalni univerzitet Travnik u Travniku , Travnik , Bosnia and Herzegovina

Mirza Mehanović
Mirza Mehanović
Abstract

Artificial intelligence (AI) is becoming a key element in enhancing transportation systems, enabling automation, optimization, and real-time traffic flow prediction. Its application in Intelligent Transportation Systems (ITS) contributes to more efficient passenger transport in urban areas, where infrastructure fails to keep up with growing demand, leading to frequent traffic congestion and bottlenecks.This paper will describe how advanced AI algorithms and deep learning models enable traffic analysis, congestion prediction, and route optimization, improving the reliability and efficiency of public transportation. The integration of AI into ITS not only optimizes traffic flows but also enhances sustainability by reducing emissions and improving energy performance. Data-driven smart solutions make transportation safer, more environmentally friendly, and better suited to user needs.

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.